Skip to content

bamojax.base

Node

The essential element of any Bayesian model is the variable, represented by a node in a DAG.

Nodes can consist of stochastic or deterministic variables, and can be observed or latent.

Hyperparameters of a model are implicitly observed, deterministic nodes.

Source code in bamojax/base.py
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class Node:
    r""" The essential element of any Bayesian model is the variable, represented by a node in a DAG. 

    Nodes can consist of stochastic or deterministic variables, and can be observed or latent.

    Hyperparameters of a model are implicitly observed, deterministic nodes.

    """

    def __init__(self, name: str = 'root', 
                 observations: Array = None, 
                 distribution: Union[Distribution, Bijector] = None, 
                 parents = None, 
                 link_fn: Callable = None,
                 shape: Union[Tuple, int] = None,
                 bijector: Bijector = None):
        self.name = name

        if shape is None: 
            shape = ( )
        self.shape = shape
        if bijector is not None:
            self.bijector = bijector
        if observations is not None:
            observations = jnp.asarray(observations) if jnp.isscalar(observations) else observations
            self.observations = observations
        if distribution is not None:
            self.distribution = distribution
            self.parents = {}
            if parents is not None:
                for param, parent in parents.items():
                    self.add_parent(param, parent)            
            if link_fn is None:
                def identity(**kwargs):
                    return kwargs
                link_fn = identity
            self.link_fn = link_fn        

    #
    def is_observed(self) -> bool:
        """ Check if a node is an observed variable.

        """
        return hasattr(self, 'observations')

    #
    def is_stochastic(self) -> bool:
        """ Check whether a node is stochastic or deterministic.

        """
        return hasattr(self, 'distribution')

    #
    def is_root(self) -> bool:
        """ Check whether a node is a root node.

        """
        return not hasattr(self, 'parents') or len(self.parents) == 0

    #
    def add_parent(self, param, node):
        """ Add a parent node.

        """
        assert isinstance(node, Node)
        self.parents[param] = node

    #
    def set_step_fn(self, step_fn):
        self.step_fn = step_fn

    #
    def set_step_fn_parameter(self, step_fn_params):
        self.step_fn_params = step_fn_params

    #
    def is_leaf(self):
        """ Check whether a node is observed and has parents.

        """
        return hasattr(self, 'parents') and self.is_observed()

    #    
    def get_distribution(self, state: dict = None, minibatch: dict = None) -> Distribution:
        r""" Derives the parametrized distribution p(node | Parents=x), where x is derived from the state object.

        Args:
            state: Current assignment of (parent) values.
            minibatch: A additional set of assigned variables, useful for out-of-sample predictions.
        Returns:
            An instantiated distrax distribution object.

        """

        # Root-level nodes can be defined as instantiated distrax distributions.
        if isinstance(self.distribution, Distribution):
            return self.distribution

        if minibatch is None:
            minibatch = {}

        # Otherwise the distribution is instantiated from the state.
        parent_values = {}
        for parent_name, parent_node in self.parents.items():
            if parent_node in state:
                parent_values[parent_name] = state[parent_node]
            else:
                if parent_name in minibatch:
                    parent_values[parent_name] = minibatch[parent_node]
                else:
                    parent_values[parent_name] = self.parents[parent_name].observations

        transformed_parents = self.link_fn(**parent_values)
        if hasattr(self, 'bijector'):
            return TransformedDistribution(self.distribution(**transformed_parents), self.bijector)
        else:
            return self.distribution(**transformed_parents)

    #
    def __repr__(self) -> str:
        return f'{self.name}'

    #
    def __hash__(self):
        return hash((self.name))

    #
    def __eq__(self, other):
        if isinstance(other, Node):
            return self.name == other.name
        return NotImplementedError

is_observed()

Check if a node is an observed variable.

Source code in bamojax/base.py
52
53
54
55
56
def is_observed(self) -> bool:
    """ Check if a node is an observed variable.

    """
    return hasattr(self, 'observations')

is_stochastic()

Check whether a node is stochastic or deterministic.

Source code in bamojax/base.py
59
60
61
62
63
def is_stochastic(self) -> bool:
    """ Check whether a node is stochastic or deterministic.

    """
    return hasattr(self, 'distribution')

is_root()

Check whether a node is a root node.

Source code in bamojax/base.py
66
67
68
69
70
def is_root(self) -> bool:
    """ Check whether a node is a root node.

    """
    return not hasattr(self, 'parents') or len(self.parents) == 0

add_parent(param, node)

Add a parent node.

Source code in bamojax/base.py
73
74
75
76
77
78
def add_parent(self, param, node):
    """ Add a parent node.

    """
    assert isinstance(node, Node)
    self.parents[param] = node

is_leaf()

Check whether a node is observed and has parents.

Source code in bamojax/base.py
89
90
91
92
93
def is_leaf(self):
    """ Check whether a node is observed and has parents.

    """
    return hasattr(self, 'parents') and self.is_observed()

get_distribution(state=None, minibatch=None)

Derives the parametrized distribution p(node | Parents=x), where x is derived from the state object.

Parameters:

Name Type Description Default
state dict

Current assignment of (parent) values.

None
minibatch dict

A additional set of assigned variables, useful for out-of-sample predictions.

None

Returns: An instantiated distrax distribution object.

Source code in bamojax/base.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def get_distribution(self, state: dict = None, minibatch: dict = None) -> Distribution:
    r""" Derives the parametrized distribution p(node | Parents=x), where x is derived from the state object.

    Args:
        state: Current assignment of (parent) values.
        minibatch: A additional set of assigned variables, useful for out-of-sample predictions.
    Returns:
        An instantiated distrax distribution object.

    """

    # Root-level nodes can be defined as instantiated distrax distributions.
    if isinstance(self.distribution, Distribution):
        return self.distribution

    if minibatch is None:
        minibatch = {}

    # Otherwise the distribution is instantiated from the state.
    parent_values = {}
    for parent_name, parent_node in self.parents.items():
        if parent_node in state:
            parent_values[parent_name] = state[parent_node]
        else:
            if parent_name in minibatch:
                parent_values[parent_name] = minibatch[parent_node]
            else:
                parent_values[parent_name] = self.parents[parent_name].observations

    transformed_parents = self.link_fn(**parent_values)
    if hasattr(self, 'bijector'):
        return TransformedDistribution(self.distribution(**transformed_parents), self.bijector)
    else:
        return self.distribution(**transformed_parents)

Model

A Bayesian model is represented as a directed acyclic graph, in which nodes are associated with random variables.

Typical use:

model = Model('model name')
_ = model.add_node('x', observations=...)
Source code in bamojax/base.py
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
class Model:
    r""" A Bayesian model is represented as a directed acyclic graph, in which nodes are associated with random variables.

    Typical use:

        model = Model('model name')
        _ = model.add_node('x', observations=...)

    """

    def __init__(self, name='Bayesian model', verbose=False):
        self.name = name
        self.nodes = {}
        self.root_nodes = list()
        self.leaf_nodes = list()
        self.children = dict()
        self.parents = dict()
        self.verbose = verbose

    #
    def add_node(self, 
                 name: str = 'root', 
                 distribution: Union[Distribution, Bijector] = None, 
                 observations: Array = None, 
                 parents: dict = None, 
                 link_fn: Callable = None,
                 shape: Union[Tuple, int] = None,
                 bijector: Bijector = None) -> Node:
        r""" Adds a node to the Bayesian model DAG

        Args:
          name: The name of the variable.
          distribution: The distrax distribution of the variable given its (transformed) parents.
          observations: If the node is observed; the actual observations.
          parents: The nodes that this node depends on.
          link_fn: A link function combining the inputs to form the input to the corresponding distrax distribution.
          shape: The dimensions of the variable.
          bijector: A bijector can be passed to transform variables.
        Returns:
          New node

        """
        if parents is not None:
            new_parents = {}
            for parent_name, parent in parents.items():
                if not isinstance(parent, Node):
                    # Parent is numeric
                    parent_node = self.add_node(name=f'{parent_name}_{name}', observations=parent)
                    new_parents[parent_name] = parent_node
                else:
                    new_parents[parent_name] = parent
            parents = new_parents
        new_node = Node(name=name, distribution=distribution, observations=observations, parents=parents, link_fn=link_fn, shape=shape, bijector=bijector)
        self.nodes[name] = new_node
        if self.verbose: print(f'Adding node ({name})')
        if parents is not None:
            for parent in parents.values():
                self.add_edge(parent, new_node)
        if new_node.is_root():
            self.root_nodes.append(new_node)
        if new_node.is_leaf():
            self.leaf_nodes.append(new_node)
        return new_node

    #    
    def add_edge(self, from_node, to_node):
        r""" Store the dependence between two nodes.

        Args:
            from_node: source node
            to_node: target node

        """
        if self.verbose: print(f'Add edge ({from_node}) -> ({to_node})')
        if not from_node in self.children:
            self.children[from_node] = set()
        self.children[from_node].add(to_node)
        if not to_node in self.parents:
            self.parents[to_node] = set()
        self.parents[to_node].add(from_node)

    #
    def get_children(self, node):
        """ Returns the children of a node.

        """
        if node in self.children:
            return self.children[node]
        return []

    #
    def get_parents(self, node):
        """ Returns the parents of a node.

        """
        if node in self.parents:
            return self.parents[node]
        return []

    #
    def get_root_nodes(self):
        """ Return all nodes that are roots.

        """
        return self.root_nodes

    #
    def get_leaf_nodes(self):
        """ Returns all nodes that are leaves.

        """
        return {self.nodes[k]: self.nodes[k] for k in self.nodes.keys() - self.children.keys()}

    #
    def get_stochastic_nodes(self):
        """ Returns all stochastic nodes.

        """
        return {k: v for k, v in self.nodes.items() if v.is_stochastic()}

    #
    def get_latent_nodes(self):
        """ Returns all latent nodes.

        """
        return {k: v for k, v in self.nodes.items() if v.is_stochastic() and not v.is_observed()}

    #
    def logprior_fn(self) -> Callable:
        r""" Returns a callable function that provides the log prior of the model given the current state of assigned variables.

        """

        def logprior_fn_(state) -> float:
            sorted_free_variables = [node for node in self.get_node_order() if node.is_stochastic() and not node.is_observed()]
            logprob = 0.0
            for node in sorted_free_variables:
                if node.is_root():
                    logprob += jnp.sum(node.get_distribution().log_prob(state[node.name]))
                else:
                    logprob += jnp.sum(node.get_distribution(state).log_prob(state[node.name]))
            return logprob

        #
        return logprior_fn_

    #
    def loglikelihood_fn(self) -> Callable:
        r""" Returns a callable function that provides the log likelihood of the model given the current state of assigned variables.

        """

        def loglikelihood_fn_(state) -> float:
            logprob = 0.0
            for node in self.get_leaf_nodes():
                if '__mask' in state:
                    element_wise_logp = node.get_distribution(state).log_prob(value=node.observations)
                    logprob += jnp.sum(jnp.nan_to_num(element_wise_logp, nan=0.0)*state['__mask'])
                else:
                    logprob += jnp.sum(node.get_distribution(state).log_prob(value=node.observations))
            return logprob

        #
        return loglikelihood_fn_

    #
    def batched_loglikelihood_fn(self) -> Callable:
        r""" Batched loglikelihood function for stochastic-gradient methods.

        Assumes `minibatch` is a dictionary containing a subset of observations for each observed leaf node.

        """

        def loglikelihood_fn_(state, minibatch) -> float:
            logprob = 0.0
            for node in self.get_leaf_nodes():
                logprob += jnp.sum(node.get_distribution(state, minibatch=minibatch).log_prob(value=minibatch[node]))
            return logprob

        #
        return loglikelihood_fn_

    #
    def get_model_size(self) -> int:
        r""" Returns the total dimensions of the model. 

        As node.distribution can be abstract, we create a concrete instantiation by drawing a sample from the prior and deriving the shape from this sample.

        """

        draw = self.sample_prior(key=jrnd.PRNGKey(0)) 
        size = jnp.sum(jnp.array([jnp.size(v) for v in draw.values()]))
        return size

    #  
    def get_node_order(self):
        r""" Returns the latent variables in topological order; child nodes are always listed after their parents.

        """
        if not hasattr(self, 'node_order'):
            self.node_order = self.__get_topological_order()
        return self.node_order

    #
    def __get_topological_order(self) -> list:
        r""" Traverses the directed acyclic graph that defines the Bayesian model and returns its nodes in topological order

        Returns:
            A list of sorted nodes.

        """
        def traverse_dag_backwards(node: Node, visited_: dict, order: list):
            if node in visited_:
                return
            visited_[node] = 1

            for parent_node in node.parents.values():
                if parent_node.is_stochastic():
                    traverse_dag_backwards(parent_node, visited_, order)

            order.append(node)

        #
        order = []
        visited = {}
        leaves = self.get_leaf_nodes()
        for leaf in leaves:
            traverse_dag_backwards(leaf, visited, order)
        return order

    #
    def sample_prior(self, key) -> dict:
        r""" Samples from the (hierarchical) prior distribution of the model.

        Args:
            key: Random seed
        Returns:
            A state dictionary with one random value for each node.

        """
        state = dict()
        sorted_free_variables = [node for node in self.get_node_order() if node.is_stochastic() and not node.is_observed()]
        for node in sorted_free_variables:
            key, subkey = jrnd.split(key)
            if node.is_root(): 
                dist = node.get_distribution()               
            else:
                dist = node.get_distribution(state)
            state[node.name] = dist.sample(key=subkey, sample_shape=node.shape)   
        return state

    #
    def sample_predictive(self, key, state: dict, input_variables: dict = None) -> dict:
        r""" Sample stochastic observed nodes

        Args:
            key: PRNGKey
            state: a draw from either $p(x)$ or $p(x \mid \cdot)$
            input_variables: a dictionary with values for observed non-stochastic nodes

        Returns:
            A dictionary which is the same as 'state' but appended with sampled values.

        """

        for node in self.get_leaf_nodes():
            key, key_obs = jrnd.split(key)
            state[node.name] = node.get_distribution(state, minibatch=input_variables).sample(key=key_obs, sample_shape=node.shape)
        return state


    def sample_prior_predictive(self, key, prediction_options: dict = None) -> dict:
        r""" Sample from the (hierarchical) prior predictive distribution of the model.

        Args:
            key: Random seed
            prediction_options: A dictionary of options which can include minibatched input variables

        Returns:
            A dictionary with a random value for all stochastic observed nodes.

        """
        key, key_latent = jrnd.split(key)
        state = self.sample_prior(key_latent)
        return self.sample_predictive(key, state, prediction_options)

    #
    def sample_posterior_predictive(self, key, state: dict, input_variables: dict = None) -> dict:
        r""" Sample from the posterior predictive

        Args:
            key: Random key
            state: A draw from the posterior
            input_variables: Potential predictors and other non-stochastic observations

        Returns:
            A dictionary containing values for all stochastic observed nodes, conditioned on the observations.

        """

        return self.sample_predictive(key, state, input_variables)

    #
    def print_gibbs(self):
        r""" Print the structure of conditional distributions. 


        """

        print('Gibbs structure:')
        sorted_free_variables = [node for node in self.get_node_order() if node.is_stochastic() and not node.is_observed()]
        for node in sorted_free_variables:
            # get prior density        
            if node.is_root():
                prior = f'p({node})'
            else:
                parents = {p for p in self.get_parents(node)}
                prior = f'p({node} | {", ".join([p.name for p in parents])})'

            # get conditional density
            conditionals = []
            children = [c for c in self.get_children(node)]        
            for child in children:
                co_parents = set()
                for parent in self.get_parents(child):
                    if not parent == node or parent in co_parents:
                        co_parents.add(parent)        
                co_parents.add(node)
                conditional = f'p({child} | {", ".join([str(p) for p in co_parents])})'
                conditionals.append(conditional)

            print(f'{str(node):20s}: {" ".join(conditionals)} {prior}')

add_node(name='root', distribution=None, observations=None, parents=None, link_fn=None, shape=None, bijector=None)

Adds a node to the Bayesian model DAG

Parameters:

Name Type Description Default
name str

The name of the variable.

'root'
distribution Union[Distribution, Transform]

The distrax distribution of the variable given its (transformed) parents.

None
observations Array

If the node is observed; the actual observations.

None
parents dict

The nodes that this node depends on.

None
link_fn Callable

A link function combining the inputs to form the input to the corresponding distrax distribution.

None
shape Union[Tuple, int]

The dimensions of the variable.

None
bijector Transform

A bijector can be passed to transform variables.

None

Returns: New node

Source code in bamojax/base.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
def add_node(self, 
             name: str = 'root', 
             distribution: Union[Distribution, Bijector] = None, 
             observations: Array = None, 
             parents: dict = None, 
             link_fn: Callable = None,
             shape: Union[Tuple, int] = None,
             bijector: Bijector = None) -> Node:
    r""" Adds a node to the Bayesian model DAG

    Args:
      name: The name of the variable.
      distribution: The distrax distribution of the variable given its (transformed) parents.
      observations: If the node is observed; the actual observations.
      parents: The nodes that this node depends on.
      link_fn: A link function combining the inputs to form the input to the corresponding distrax distribution.
      shape: The dimensions of the variable.
      bijector: A bijector can be passed to transform variables.
    Returns:
      New node

    """
    if parents is not None:
        new_parents = {}
        for parent_name, parent in parents.items():
            if not isinstance(parent, Node):
                # Parent is numeric
                parent_node = self.add_node(name=f'{parent_name}_{name}', observations=parent)
                new_parents[parent_name] = parent_node
            else:
                new_parents[parent_name] = parent
        parents = new_parents
    new_node = Node(name=name, distribution=distribution, observations=observations, parents=parents, link_fn=link_fn, shape=shape, bijector=bijector)
    self.nodes[name] = new_node
    if self.verbose: print(f'Adding node ({name})')
    if parents is not None:
        for parent in parents.values():
            self.add_edge(parent, new_node)
    if new_node.is_root():
        self.root_nodes.append(new_node)
    if new_node.is_leaf():
        self.leaf_nodes.append(new_node)
    return new_node

add_edge(from_node, to_node)

Store the dependence between two nodes.

Parameters:

Name Type Description Default
from_node

source node

required
to_node

target node

required
Source code in bamojax/base.py
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
def add_edge(self, from_node, to_node):
    r""" Store the dependence between two nodes.

    Args:
        from_node: source node
        to_node: target node

    """
    if self.verbose: print(f'Add edge ({from_node}) -> ({to_node})')
    if not from_node in self.children:
        self.children[from_node] = set()
    self.children[from_node].add(to_node)
    if not to_node in self.parents:
        self.parents[to_node] = set()
    self.parents[to_node].add(from_node)

get_children(node)

Returns the children of a node.

Source code in bamojax/base.py
230
231
232
233
234
235
236
def get_children(self, node):
    """ Returns the children of a node.

    """
    if node in self.children:
        return self.children[node]
    return []

get_parents(node)

Returns the parents of a node.

Source code in bamojax/base.py
239
240
241
242
243
244
245
def get_parents(self, node):
    """ Returns the parents of a node.

    """
    if node in self.parents:
        return self.parents[node]
    return []

get_root_nodes()

Return all nodes that are roots.

Source code in bamojax/base.py
248
249
250
251
252
def get_root_nodes(self):
    """ Return all nodes that are roots.

    """
    return self.root_nodes

get_leaf_nodes()

Returns all nodes that are leaves.

Source code in bamojax/base.py
255
256
257
258
259
def get_leaf_nodes(self):
    """ Returns all nodes that are leaves.

    """
    return {self.nodes[k]: self.nodes[k] for k in self.nodes.keys() - self.children.keys()}

get_stochastic_nodes()

Returns all stochastic nodes.

Source code in bamojax/base.py
262
263
264
265
266
def get_stochastic_nodes(self):
    """ Returns all stochastic nodes.

    """
    return {k: v for k, v in self.nodes.items() if v.is_stochastic()}

get_latent_nodes()

Returns all latent nodes.

Source code in bamojax/base.py
269
270
271
272
273
def get_latent_nodes(self):
    """ Returns all latent nodes.

    """
    return {k: v for k, v in self.nodes.items() if v.is_stochastic() and not v.is_observed()}

logprior_fn()

Returns a callable function that provides the log prior of the model given the current state of assigned variables.

Source code in bamojax/base.py
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
def logprior_fn(self) -> Callable:
    r""" Returns a callable function that provides the log prior of the model given the current state of assigned variables.

    """

    def logprior_fn_(state) -> float:
        sorted_free_variables = [node for node in self.get_node_order() if node.is_stochastic() and not node.is_observed()]
        logprob = 0.0
        for node in sorted_free_variables:
            if node.is_root():
                logprob += jnp.sum(node.get_distribution().log_prob(state[node.name]))
            else:
                logprob += jnp.sum(node.get_distribution(state).log_prob(state[node.name]))
        return logprob

    #
    return logprior_fn_

loglikelihood_fn()

Returns a callable function that provides the log likelihood of the model given the current state of assigned variables.

Source code in bamojax/base.py
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
def loglikelihood_fn(self) -> Callable:
    r""" Returns a callable function that provides the log likelihood of the model given the current state of assigned variables.

    """

    def loglikelihood_fn_(state) -> float:
        logprob = 0.0
        for node in self.get_leaf_nodes():
            if '__mask' in state:
                element_wise_logp = node.get_distribution(state).log_prob(value=node.observations)
                logprob += jnp.sum(jnp.nan_to_num(element_wise_logp, nan=0.0)*state['__mask'])
            else:
                logprob += jnp.sum(node.get_distribution(state).log_prob(value=node.observations))
        return logprob

    #
    return loglikelihood_fn_

batched_loglikelihood_fn()

Batched loglikelihood function for stochastic-gradient methods.

Assumes minibatch is a dictionary containing a subset of observations for each observed leaf node.

Source code in bamojax/base.py
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
def batched_loglikelihood_fn(self) -> Callable:
    r""" Batched loglikelihood function for stochastic-gradient methods.

    Assumes `minibatch` is a dictionary containing a subset of observations for each observed leaf node.

    """

    def loglikelihood_fn_(state, minibatch) -> float:
        logprob = 0.0
        for node in self.get_leaf_nodes():
            logprob += jnp.sum(node.get_distribution(state, minibatch=minibatch).log_prob(value=minibatch[node]))
        return logprob

    #
    return loglikelihood_fn_

get_model_size()

Returns the total dimensions of the model.

As node.distribution can be abstract, we create a concrete instantiation by drawing a sample from the prior and deriving the shape from this sample.

Source code in bamojax/base.py
331
332
333
334
335
336
337
338
339
340
def get_model_size(self) -> int:
    r""" Returns the total dimensions of the model. 

    As node.distribution can be abstract, we create a concrete instantiation by drawing a sample from the prior and deriving the shape from this sample.

    """

    draw = self.sample_prior(key=jrnd.PRNGKey(0)) 
    size = jnp.sum(jnp.array([jnp.size(v) for v in draw.values()]))
    return size

get_node_order()

Returns the latent variables in topological order; child nodes are always listed after their parents.

Source code in bamojax/base.py
343
344
345
346
347
348
349
def get_node_order(self):
    r""" Returns the latent variables in topological order; child nodes are always listed after their parents.

    """
    if not hasattr(self, 'node_order'):
        self.node_order = self.__get_topological_order()
    return self.node_order

sample_prior(key)

Samples from the (hierarchical) prior distribution of the model.

Parameters:

Name Type Description Default
key

Random seed

required

Returns: A state dictionary with one random value for each node.

Source code in bamojax/base.py
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
def sample_prior(self, key) -> dict:
    r""" Samples from the (hierarchical) prior distribution of the model.

    Args:
        key: Random seed
    Returns:
        A state dictionary with one random value for each node.

    """
    state = dict()
    sorted_free_variables = [node for node in self.get_node_order() if node.is_stochastic() and not node.is_observed()]
    for node in sorted_free_variables:
        key, subkey = jrnd.split(key)
        if node.is_root(): 
            dist = node.get_distribution()               
        else:
            dist = node.get_distribution(state)
        state[node.name] = dist.sample(key=subkey, sample_shape=node.shape)   
    return state

sample_predictive(key, state, input_variables=None)

Sample stochastic observed nodes

Parameters:

Name Type Description Default
key

PRNGKey

required
state dict

a draw from either \(p(x)\) or \(p(x \mid \cdot)\)

required
input_variables dict

a dictionary with values for observed non-stochastic nodes

None

Returns:

Type Description
dict

A dictionary which is the same as 'state' but appended with sampled values.

Source code in bamojax/base.py
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
def sample_predictive(self, key, state: dict, input_variables: dict = None) -> dict:
    r""" Sample stochastic observed nodes

    Args:
        key: PRNGKey
        state: a draw from either $p(x)$ or $p(x \mid \cdot)$
        input_variables: a dictionary with values for observed non-stochastic nodes

    Returns:
        A dictionary which is the same as 'state' but appended with sampled values.

    """

    for node in self.get_leaf_nodes():
        key, key_obs = jrnd.split(key)
        state[node.name] = node.get_distribution(state, minibatch=input_variables).sample(key=key_obs, sample_shape=node.shape)
    return state

sample_prior_predictive(key, prediction_options=None)

Sample from the (hierarchical) prior predictive distribution of the model.

Parameters:

Name Type Description Default
key

Random seed

required
prediction_options dict

A dictionary of options which can include minibatched input variables

None

Returns:

Type Description
dict

A dictionary with a random value for all stochastic observed nodes.

Source code in bamojax/base.py
419
420
421
422
423
424
425
426
427
428
429
430
431
432
def sample_prior_predictive(self, key, prediction_options: dict = None) -> dict:
    r""" Sample from the (hierarchical) prior predictive distribution of the model.

    Args:
        key: Random seed
        prediction_options: A dictionary of options which can include minibatched input variables

    Returns:
        A dictionary with a random value for all stochastic observed nodes.

    """
    key, key_latent = jrnd.split(key)
    state = self.sample_prior(key_latent)
    return self.sample_predictive(key, state, prediction_options)

sample_posterior_predictive(key, state, input_variables=None)

Sample from the posterior predictive

Parameters:

Name Type Description Default
key

Random key

required
state dict

A draw from the posterior

required
input_variables dict

Potential predictors and other non-stochastic observations

None

Returns:

Type Description
dict

A dictionary containing values for all stochastic observed nodes, conditioned on the observations.

Source code in bamojax/base.py
435
436
437
438
439
440
441
442
443
444
445
446
447
448
def sample_posterior_predictive(self, key, state: dict, input_variables: dict = None) -> dict:
    r""" Sample from the posterior predictive

    Args:
        key: Random key
        state: A draw from the posterior
        input_variables: Potential predictors and other non-stochastic observations

    Returns:
        A dictionary containing values for all stochastic observed nodes, conditioned on the observations.

    """

    return self.sample_predictive(key, state, input_variables)

print_gibbs()

Print the structure of conditional distributions.

Source code in bamojax/base.py
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def print_gibbs(self):
    r""" Print the structure of conditional distributions. 


    """

    print('Gibbs structure:')
    sorted_free_variables = [node for node in self.get_node_order() if node.is_stochastic() and not node.is_observed()]
    for node in sorted_free_variables:
        # get prior density        
        if node.is_root():
            prior = f'p({node})'
        else:
            parents = {p for p in self.get_parents(node)}
            prior = f'p({node} | {", ".join([p.name for p in parents])})'

        # get conditional density
        conditionals = []
        children = [c for c in self.get_children(node)]        
        for child in children:
            co_parents = set()
            for parent in self.get_parents(child):
                if not parent == node or parent in co_parents:
                    co_parents.add(parent)        
            co_parents.add(node)
            conditional = f'p({child} | {", ".join([str(p) for p in co_parents])})'
            conditionals.append(conditional)

        print(f'{str(node):20s}: {" ".join(conditionals)} {prior}')

MetaModel

A meta-model is a collection of Bayesian models, which can be used for reversible jump MCMC.

Source code in bamojax/base.py
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
class MetaModel():
    r""" A meta-model is a collection of Bayesian models, which can be used for reversible jump MCMC.
    """

    def __init__(self, 
                 model_list):
        self.model_list = model_list
        self.M = len(model_list)
        self.model_sizes = [model.get_model_size() for model in model_list]        
        self.indiv_latent_nodes = [set(model.get_latent_nodes().keys()) for model in model_list]

        # find the number of auxiliary variables needed, as the largest difference in latent node sets between any two models
        self.num_auxiliary = 0
        for i in range(self.M):
            for j in range(i+1, self.M):
                diff_left = set.difference(self.indiv_latent_nodes[i], self.indiv_latent_nodes[j])
                diff_right = set.difference(self.indiv_latent_nodes[j], self.indiv_latent_nodes[i])
                max_diff = jnp.max(jnp.array([len(diff_left), len(diff_right)]))
                if max_diff > self.num_auxiliary:
                    self.num_auxiliary = max_diff

        self.latent_variables = set.union(*self.indiv_latent_nodes)
        self.auxiliary_variables = [f'u_{i}' for i in range(self.num_auxiliary)]
        self.meta_state = self.latent_variables.union(set(self.auxiliary_variables))

        def make_model_sample_prior_fn(model_index):
            """Creates a function that samples from the prior of the specified model index."""
            def fn(key):
                sample = self.model_list[model_index].sample_prior(key)
                all_latents = {k: jnp.nan for k in self.latent_variables}
                return {**all_latents, **sample}  

            #   
            return fn
        #
        self.model_sample_prior_fns = [make_model_sample_prior_fn(i) for i in range(self.M)]

        def make_model_sample_predictive_fn(model_index):
            """Creates a function that samples from the predictive distribution of the specified model index."""
            def fn(input):
                key, state, input_variables = input
                return self.model_list[model_index].sample_predictive(key, state, input_variables)

            #   
            return fn

        #
        self.model_sample_predictive_fns = [make_model_sample_predictive_fn(i) for i in range(self.M)]

        def make_logprior_fn(model_index):
            """Creates a function that computes the log prior of the specified model index."""
            def fn(state):
                return self.model_list[model_index].logprior_fn()(state)

            #   
            return fn

        #
        self.model_logprior_fns = [make_logprior_fn(i) for i in range(self.M)]

        def make_loglikelihood_fn(model_index):
            """Creates a function that computes the log likelihood of the specified model index."""
            def fn(state):
                return self.model_list[model_index].loglikelihood_fn()(state)

            #   
            return fn

        #
        self.model_loglikelihood_fns = [make_loglikelihood_fn(i) for i in range(self.M)]

    #
    def sample_prior(self, key) -> dict:
        key_model, key_sample = jrnd.split(key)
        model_index = jrnd.randint(key_model, shape=(), minval=0, maxval=self.M)
        sample = jax.lax.switch(model_index, self.model_sample_prior_fns, operand=key_sample)
        auxiliary_values = {f'u_{i}': jnp.nan for i in range(self.num_auxiliary)}  # to keep the same pytree structure across models in reversible jump MCMC
        return {'model_index': model_index, **sample, **auxiliary_values}

    #
    def sample_predictive(self, key, state: dict, input_variables: dict = None) -> dict:
        return jax.lax.switch(state['model_index'], self.model_sample_predictive_fns, 
                              operand=[key, state, input_variables])

    #
    def sample_prior_predictive(self, key, **input_variables) -> dict:
        key_prior, key_predictive = jrnd.split(key)
        prior_sample = self.sample_prior(key_prior)
        return self.sample_predictive(key_predictive, prior_sample, input_variables=input_variables)

    #
    def sample_posterior_predictive(self, key, state: dict, input_variables: dict = None) -> dict:
        return self.sample_predictive(key, state, input_variables=input_variables)

    #
    def logprior_fn(self) -> Callable:

        def fn(state: dict) -> float:
            """Computes the log prior of the state."""
            model_index = state['model_index']
            return jax.lax.switch(model_index, self.model_logprior_fns, operand=state)

        #
        return fn

    #
    def loglikelihood_fn(self) -> Callable:

        def fn(state: dict) -> float:   
            """Computes the log likelihood of the state."""
            model_index = state['model_index']
            return jax.lax.switch(model_index, self.model_loglikelihood_fns, operand=state)
        #
        return fn