bamojax.base
¶
Node
¶
The essential element of any Bayesian model is the variable, represented by a node in a DAG.
Nodes can consist of stochastic or deterministic variables, and can be observed or latent.
Hyperparameters of a model are implicitly observed, deterministic nodes.
Source code in bamojax/base.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
|
is_observed()
¶
Check if a node is an observed variable.
Source code in bamojax/base.py
52 53 54 55 56 |
|
is_stochastic()
¶
Check whether a node is stochastic or deterministic.
Source code in bamojax/base.py
59 60 61 62 63 |
|
is_root()
¶
Check whether a node is a root node.
Source code in bamojax/base.py
66 67 68 69 70 |
|
add_parent(param, node)
¶
Add a parent node.
Source code in bamojax/base.py
73 74 75 76 77 78 |
|
is_leaf()
¶
Check whether a node is observed and has parents.
Source code in bamojax/base.py
89 90 91 92 93 |
|
get_distribution(state=None, minibatch=None)
¶
Derives the parametrized distribution p(node | Parents=x), where x is derived from the state object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
dict
|
Current assignment of (parent) values. |
None
|
minibatch
|
dict
|
A additional set of assigned variables, useful for out-of-sample predictions. |
None
|
Returns: An instantiated distrax distribution object.
Source code in bamojax/base.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
Model
¶
A Bayesian model is represented as a directed acyclic graph, in which nodes are associated with random variables.
Typical use:
model = Model('model name')
_ = model.add_node('x', observations=...)
Source code in bamojax/base.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
|
add_node(name='root', distribution=None, observations=None, parents=None, link_fn=None, shape=None, bijector=None)
¶
Adds a node to the Bayesian model DAG
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the variable. |
'root'
|
distribution
|
Union[Distribution, Transform]
|
The distrax distribution of the variable given its (transformed) parents. |
None
|
observations
|
Array
|
If the node is observed; the actual observations. |
None
|
parents
|
dict
|
The nodes that this node depends on. |
None
|
link_fn
|
Callable
|
A link function combining the inputs to form the input to the corresponding distrax distribution. |
None
|
shape
|
Union[Tuple, int]
|
The dimensions of the variable. |
None
|
bijector
|
Transform
|
A bijector can be passed to transform variables. |
None
|
Returns: New node
Source code in bamojax/base.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|
add_edge(from_node, to_node)
¶
Store the dependence between two nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
from_node
|
source node |
required | |
to_node
|
target node |
required |
Source code in bamojax/base.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
|
get_children(node)
¶
Returns the children of a node.
Source code in bamojax/base.py
230 231 232 233 234 235 236 |
|
get_parents(node)
¶
Returns the parents of a node.
Source code in bamojax/base.py
239 240 241 242 243 244 245 |
|
get_root_nodes()
¶
Return all nodes that are roots.
Source code in bamojax/base.py
248 249 250 251 252 |
|
get_leaf_nodes()
¶
Returns all nodes that are leaves.
Source code in bamojax/base.py
255 256 257 258 259 |
|
get_stochastic_nodes()
¶
Returns all stochastic nodes.
Source code in bamojax/base.py
262 263 264 265 266 |
|
get_latent_nodes()
¶
Returns all latent nodes.
Source code in bamojax/base.py
269 270 271 272 273 |
|
logprior_fn()
¶
Returns a callable function that provides the log prior of the model given the current state of assigned variables.
Source code in bamojax/base.py
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
loglikelihood_fn()
¶
Returns a callable function that provides the log likelihood of the model given the current state of assigned variables.
Source code in bamojax/base.py
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
|
batched_loglikelihood_fn()
¶
Batched loglikelihood function for stochastic-gradient methods.
Assumes minibatch
is a dictionary containing a subset of observations for each observed leaf node.
Source code in bamojax/base.py
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
|
get_model_size()
¶
Returns the total dimensions of the model.
As node.distribution can be abstract, we create a concrete instantiation by drawing a sample from the prior and deriving the shape from this sample.
Source code in bamojax/base.py
331 332 333 334 335 336 337 338 339 340 |
|
get_node_order()
¶
Returns the latent variables in topological order; child nodes are always listed after their parents.
Source code in bamojax/base.py
343 344 345 346 347 348 349 |
|
sample_prior(key)
¶
Samples from the (hierarchical) prior distribution of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
Random seed |
required |
Returns: A state dictionary with one random value for each node.
Source code in bamojax/base.py
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
|
sample_predictive(key, state, input_variables=None)
¶
Sample stochastic observed nodes
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
PRNGKey |
required | |
state
|
dict
|
a draw from either \(p(x)\) or \(p(x \mid \cdot)\) |
required |
input_variables
|
dict
|
a dictionary with values for observed non-stochastic nodes |
None
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary which is the same as 'state' but appended with sampled values. |
Source code in bamojax/base.py
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
|
sample_prior_predictive(key, prediction_options=None)
¶
Sample from the (hierarchical) prior predictive distribution of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
Random seed |
required | |
prediction_options
|
dict
|
A dictionary of options which can include minibatched input variables |
None
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary with a random value for all stochastic observed nodes. |
Source code in bamojax/base.py
419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
sample_posterior_predictive(key, state, input_variables=None)
¶
Sample from the posterior predictive
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
Random key |
required | |
state
|
dict
|
A draw from the posterior |
required |
input_variables
|
dict
|
Potential predictors and other non-stochastic observations |
None
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing values for all stochastic observed nodes, conditioned on the observations. |
Source code in bamojax/base.py
435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
|
print_gibbs()
¶
Print the structure of conditional distributions.
Source code in bamojax/base.py
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
|
MetaModel
¶
A meta-model is a collection of Bayesian models, which can be used for reversible jump MCMC.
Source code in bamojax/base.py
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
|